

Snowmass Alpacas Auction

What have we learned about alpaca nutrition?

Robert Van Saun, DVM, MS, PhD, DACT, DACVIM (Nutrition)

Professor and Extension Veterinarian Pennsylvania State University

DELIVERING EDUCATION YOU CAN TRUST

1

Snowmass Alpaca Auction

Presentation Outline

Nutritional Advances Timeline

Are Camelids Different?

How Much Do Alpacas Eat?

Nutrient Requirements Research

Future Research Needs

R. Van Saun, Cuzco, Peru

PennState Extension

Snowmass Alpaca Auction

Nutritional Advances through Research

 Recent collaborative research activities addressing alpaca nutrition

5

Understanding the Beast

How are alpacas similar or different from sheep and cows?

Understanding the Beast

Unique Alpaca Adaptations

- Anatomic differences from ruminant animals allow for greater digestion of low-quality forage
 - Slower rate of passage retains forage longer, lower intake capacity
 - Recycling of urea to support fiber fermentation
- Metabolic adaptations also allow for survival
 - Altered glucose metabolism due to low insulin secretion, sensitivity
 - Metabolism oxidizes fatty acids from fiber fermentation, not glucose
 - Greater use of amino acids for glucose production
 - Low insulin secretion allows for greater fat mobilization

9

Understanding the Beast

Unique Glucose Metabolism

- Unlike ruminants, camelids maintain a higher blood glucose concentration
 - Glucose: 80 120 mg/dL (> 300 mg/dL)
 - Sugar, Starch → Propionate → Glucose
 - Minimal sugar and starch in native diet
- Adaptations
 - o Insulin resistance (Type II diabetes) readily mobilize fat
 - Greater VFA oxidation use acetate, butyrate from fiber fermentation
 - Increased gluconeogenesis from amino acids like a cat!

Understanding the Beast

Unique Protein Metabolism

- Predominantly consume a low protein diet dry season forage
- Allowing greater microbial fermentation of forage increases production of microbial protein (50-60% protein)
- Use of amino acids for glucose production produces large amounts of urea
- Recycle urea via saliva to C-1 to support microbial fermentation of plant fiber

13

Understanding the Beast

Alpaca BUN Concentrations by Region

Region	N	BUN (mg/dL)	Maximum	Minimum	Dietary CP (% DM)
Cerro de Pasco	50	21.65 ± 5.30 ^c	46.88	15.07	13.0 ± 0.76
Junín	50	24.82 ± 2.07 ^b	28.67	19.88	7.53 ± 0.51
Puno	50	30.43 ± 6.11 ^a	47.72	20.30	11.60 ± 0.69

Understanding the Beast

Dietary Protein Effects on BUN Concentration

Treatment	Days relative to birth	n	Mean ± SD (mg/dL)
	Day -7	16	25.34 ± 3.19
Low Protein, 9%	Day 0	16	18.16 ± 7.01
	Day +7	16	14.14 ± 5.42
	Day -7	16	25.72 ± 5.25
Medium Protein, 12%	Day 0	16	20.46 ± 6.76
	Day +7	16	17.52 ± 5.32
	Day -7	16	26.29 ± 3.36
High Protein, 15%	Day 0	16	21.22 ± 6.11
	Day +7	16	24.03 ± 5.55

BUN concentrations differed by treatment group, P<0.05

15

Understanding the Beast

Implications for Feeding Alpacas

- Feed a high forage diet with supplements that have fermentable fiber sources (beet pulp, soyhulls, wheat midds)
- Minimize feeding of high starch feed ingredients (corn, barley, wheat) to prevent forestomach acidosis
- Ensure sufficient C-1 degradable protein (25-30% soluble protein) in diet to support microbial fiber fermentation
- Camelids are predisposed to fatty liver disease
 - o Inadequate dietary protein limits glucose production, fat transport
 - o Inadequate intake leading to rapid fat mobilization

Alpaca Feed Intake

Understanding Feed Intake

- Consumption of dry matter is the cornerstone of nutrition
- Nutrient content of the diet is determined by how much the animal will consume
- Historically, it has been assumed camelids consume less compared to ruminants due to their ability to retain forage in C-1
 - Lower intake for low-quality forages
 - o Similar intake for high-quality forages
- Ruminant animal intake is directed by NDF content of forage is this the same for alpacas?

Physiologic State	TDN %	CP%	Calcium %	Phosphorus %
Llamas				
Maintenance	41.8	7.5	0.34	0.24
Growth	54.5 - 61.4	7.8 – 9.0	0.36 - 0.40	0.25 - 0.28
Lactation	54.5 - 56.8	10.6 - 11.4	0.44 - 0.45	0.31
Pregnancy	54.5	7.9	0.45	0.31
Alpacas				
Maintenance	48.0	7.4	0.32	0.22
Growth	60.2 - 67.0	7.8 - 9.1	0.37 - 0.40	0.26 - 0.29
Lactation	60.2 - 62.5	8.1	0.42	0.30
Pregnancy	60.2	10.8 - 12.0	0.42 - 0.44	0.29 - 0.31
NRC 2007				
Maintenance	53.1%	9.2%	0.18%	0.14%
Growth	52 - 80%	8.9 - 12.5%	0.3 - 0.68%	0.17 - 0.33%
Lactation	52 - 80%	9.6 - 16%	0.3 - 0.75%	0.18 - 0.42%
Pregnancy	53 - 80%	8.5 - 15.76%	0.25 - 0.45%	0.17 - 0.24%

Comparative Forage Intake

Grass Hay vs. Grass Seed Straw

Chemical composition and degradation characteristics of green hay (GH) and grass seed straw (GSS).

Forage type	GH(n=3)	GSS(n=2)
Dry matter, %	90.6 ± 0.6	91.8 ± 0.7
Ash, % of DM	8.43 ± 0.73	3.95 ± 0.61
Crude protein, % of DM	14.8 ± 0.8	6.5 ± 0.4
Crude fat, % of DM	3.10 ± 0.30	0.98 ± 0.03
NDF,3 % of DM	57.7 ± 5.7	80.9 ± 0.7
ADF,b % of DM	32.2 ± 1.6	47.7 ± 0.7
ADL, 6 % of DM	3.68 ± 0.33	8.03 ± 0.27
INDF,d % of NDF	15.01 ± 0.45	28.14 ± 0.53
k _d DNDF,e %/h	5.2	0.9

Body weight (BW) and daily intake in goats, sheep, and llamas fed green hay (GH) or grass seed straw (GSS).

GH			GSS			•	P-valu	ue	
Goat	Sheep	Llama	Goat	Sheep	Llama	SEM	F	S	F×S
44	78	137	45	72	132	5.3	•	•••	ns
0.67 ^d 1.56 ^{ab}	1.43 ^b 1.83 ^a	1.76 ^a 1.28 ^b	0.64 ^d 1.43 ^b	0.91 ^{cd} 1.27 ^b	0.99 ^c 0.76 ^c	0.10 0.10			
40.1 ^b	54.3 ^a	43.8 ^b	36.9 ^b	37.0 ^b	25.8°	2.83	ns		
0.90bc	1.05 ^{ab}	0.74 ^c	1.16 ^a	1.03 ^{ab}	0.62 ^d	0.06	ns		
	Goat 44 0.67 ^d 1.56 ^{ab} 40.1 ^b 0.39 ^c	Goat Sheep 44 78 0.67 ^d 1.43 ^b 1.56 ^{ab} 1.83 ^a 40.1 ^b 54.3 ^a 0.39 ^c 0.82 ^b 0.90 ^{bc} 1.05 ^{ab}	Goat Sheep Llama 44 78 137 0.67 ^d 1.43 ^b 1.76 ^a 1.56 ^{ab} 1.83 ^a 1.28 ^b 40.1 ^b 54.3 ^a 43.8 ^b 0.39 ^c 0.82 ^b 1.02 ^a 0.90 ^{bc} 1.05 ^{ab} 0.74 ^c	Goat Sheep Llama Goat 44 78 137 45 0.67 ^d 1.43 ^b 1.76 ^a 0.64 ^d 1.56 ^{ab} 1.83 ^a 1.28 ^b 1.43 ^b 40.1 ^b 54.3 ^a 43.8 ^b 36.9 ^b 0.39 ^c 0.82 ^b 1.02 ^a 0.52 ^c 0.90 ^{bc} 1.05 ^{ab} 0.74 ^c 1.16 ^a	Goat Sheep Llama Goat Sheep 44 78 137 45 72 0.67 ^d 1.43 ^b 1.76 ^a 0.64 ^d 0.91 ^{cd} 1.56 ^{ab} 1.83 ^a 1.28 ^b 1.43 ^b 1.27 ^b 40.1 ^b 54.3 ^a 43.8 ^b 36.9 ^b 37.0 ^b 0.39 ^c 0.82 ^b 1.02 ^a 0.52 ^c 0.74 ^b 0.90 ^{bc} 1.05 ^{ab} 0.74 ^c 1.16 ^a 1.03 ^{ab}	Goat Sheep Llama Goat Sheep Llama 44 78 137 45 72 132 0.67 ^d 1.43 ^b 1.76 ^a 0.64 ^d 0.91 ^{cd} 0.99 ^c 1.56 ^{ab} 1.83 ^a 1.28 ^b 1.43 ^b 1.27 ^b 0.76 ^c 40.1 ^b 54.3 ^a 43.8 ^b 36.9 ^b 37.0 ^b 25.8 ^c 0.39 ^c 0.82 ^b 1.02 ^a 0.52 ^c 0.74 ^b 0.80 ^b 0.90 ^{bc} 1.05 ^{ab} 0.74 ^c 1.16 ^a 1.03 ^{ab} 0.62 ^d		Goat Sheep Llama Goat Sheep Llama SEM F 44 78 137 45 72 132 5.3 . 0.67 ^d 1.43 ^b 1.76 ^a 0.64 ^d 0.91 ^{cd} 0.99 ^c 0.10 1.56 ^{ab} 1.83 ^a 1.28 ^b 1.43 ^b 1.27 ^b 0.76 ^c 0.10 40.1 ^b 54.3 ^a 43.8 ^b 36.9 ^b 37.0 ^b 25.8 ^c 2.83 0.39 ^c 0.82 ^b 1.02 ^a 0.52 ^c 0.74 ^b 0.80 ^b 0.06 ns 0.90 ^{bc} 1.05 ^{ab} 0.74 ^c 1.16 ^a 1.03 ^{ab} 0.62 ^d 0.06 ns	

 $^{^{}a-d}$ Within a row, means without common superscripts differ significantly (P<0.05).

Jalali et al., Sm. Ruminant Research 2012

^a NDF= neutral detergent fibre.

b INDF = indigestible NDF.

Alpaca Feed Intake **Camelid Intake Comparisons** Summary data from 11 published feeding trials **Maintenance Feeding Trials** Р Alpacas Llamas 1565 ± 37 801 ± 43 Dry matter intake, g/day < 0.0001 DMI/Metabolic BW, g/kg 37.1 ± 1.8 0.0002 48.4 ± 1.5 NDF intake, g/d 480 ± 22 913 ± 19 <0.0001 NDF % BW 0.78 ± 0.03 0.89 ± 0.03 0.061 DMI % BW, mean 1.35 ± 0.06 1.53 ± 0.05 0.105 0.37 - 2.40.75 - 1.8 DMI % BW, range Peruvian Feeding Trials DMI % BW 1.52 to 2.6 Growing alpaca DMI % BW 2.25 to 2.5 Pregnant alpaca Lactating alpaca DMI % BW 2.77 to 2.98 PennState Extension

23

Alpaca Feed Intake

Camelid Intake Modeling

Summary data from 11 published feeding trials

Darameter	Llamas			Alpacas			
Parameter	NDF%BW	DMI%BW	DMI/MBW	NDF%BW	DMI%BW	DMI/MBW	
СР	0.0102	NS	NS	<0.0001	<0.0001	<0.0001	
CP ²	0.0425	NS	0.0004	<0.0001	<0.0001	<0.0001	
CP ³	0.0707	NS	0.0024	<0.0001	<0.0001	<0.0001	
NDF	NS	0.0003	0.0003	NS	NS	NS	
NDF ²	<0.0001	<0.0001	0.0005	<0.0001	<0.0001	<0.0001	
NDF ³	NS	NS	0.0007	<0.0001	<0.0001	<0.0001	
CP*NDF	0.0003	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	
CP*NDF ²	0.0014	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	
CP*NDF3	0.0036	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	
Model r ²	0.70	0.77	0.84	0.76	0.75	0.78	
P <f< td=""><td><0.0001</td><td><0.0001</td><td><0.0001</td><td><0.0001</td><td><0.0001</td><td><0.0001</td></f<>	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	
					(A)	PennState Extens	

Alpaca Feed Intake

Implications for Feeding Alpacas

- Forage quality as defined by NDF and Crude Protein content will impact intake capacity
- When fed lower quality forages (>60% NDF) intake will be reduced to allow for greater microbial fermentation – dietary nutrient content will need to be increased
- When higher quality forages (30-55% NDF) are fed, intake will be higher and dietary nutrient content reduced – higher risk for obesity
- Intake guideline is to provide 0.8-0.9% body weight as NDF intake capacity

25

Forage and Nutrient Delivery

Recognizing limiting nutrients in forage Nutrient – Reproduction Interactions

-

Nutrient Requirements Body Condition Score Effects Dietary Phosphorus Effect Effect of body condition on progesterone level in pregnancy alpacas а 6.5 5.95 Progesterone, ng/ml 5.45 4.63 4.52 4.24 3.5 Day +7 Day +14 Day +28 Days after breeding Day 9 Day 13 ----- High ---- Medium ■Low ■Moderate ■High Deza Calsin et al., unpublished data 2019 PennState Extension Quispe et al., Rev Inv Vet Peru 30 (2019) 32

Protein Intake Study							
	Dietary Crude Protein Content						
	Low (9%)	Medium (12%)	High (15%)				
Prepartum							
Intake, kg/d	1.58 ± 0.67°	1.69 ± 0.51 ^b	1.75 ± 0.79°				
Intake, % of body weight	2.25	2.41	2.5				
CP intake, g/day	142.2	202.8	262.5				
Predicted CP Req, g/day	167.5 (10.6%)	167.5 (9.9%)	167.5 (9.6%)				
Postpartum							
Intake, kg/d	1.64 ± 0.67 ^b	1.72 ± 0.67°	1.77 ± 0.67°				
Intake, % of body weight	2.77	2.92	2.98				
CP intake, g/day	147.6	206.4	265.5				
CP Req, g/day (%CP)	210 (13.75%)	215 (12.1%)	215 (11.8%)				
Ancco, E PhD Thesis LaMolin	a		PennState Extens				

Nutrient Requirements Growth Responses to Phosphorus Middle of the Study **End of the Study Treatment** kg/d DM % BW g/day kg/d DM % BW g/day **Low Phosphorus** 0.458 ± 0.16 ^c 1.52 0.73 0.717 ± 0.82^{c} 2.07 1.15 **Medium Phosphorus** 0.562 ± 0.78^{b} 1.73 1.41 0.826 ± 0.82^{b} 2.24 2.07 **High Phosphorus** 0.652 ± 0.53^{a} 1.97 2.22 0.967 ± 0.49^{a} 2.60 3.29 **Initial BCS** Middle **Final BCS Treatment** Low Phosphorus 2.95 ± 0.06^{a} 2.92 ± 0.08^{b} 2.94 ± 0.08^{b} **Medium Phosphorus** 2.89 ± 0.10^{a} 3.03 ± 0.09 ab 3.25 ± 0.08a

3.01 ± 0.09a

a, b different letter in the same column differed significantly (P<0.05)

 3.36 ± 0.08^{a}

3.52 ± 0.07a

PennState Extension

High Phosphorus

Quispe, C. PhD Thesis LaMolina

Camelid Nutrition Future Needs

What are critical needs in better understanding camelid nutrition? What research is needed for sustainability of SA camelid production?

PennState Extension

41

Snowmass Alpaca Auction

What are our future SAC nutritional needs?

- Controlled feeding trials to determine mineral and vitamin requirements for differing physiologic states are needed.
- Further evaluation and modification of factorial nutrient requirement models.
- Further characterize potential forestomach degradation of protein sources to define degradable and undegradable protein fractions in feeds in more precisely feeding the camelid.
- Characterize nutritional factors controlling feed intake, including protein and NDF, at different physiologic states.
- Composition of gain over the growth period to improve requirements for growing animals.
- What factors influence the development of the forestomach to improve transition of nursing cria to solid feed without negatively impacting growth and health.
- Potential nutritional effects on colostrum formation and quality.
- Interaction of late pregnancy diet on cria survival and growth and reproduction of the female.

