Snowmass Alpacas Auction # What have we learned about alpaca nutrition? Robert Van Saun, DVM, MS, PhD, DACT, DACVIM (Nutrition) Professor and Extension Veterinarian Pennsylvania State University DELIVERING EDUCATION YOU CAN TRUST 1 **Snowmass Alpaca Auction** #### **Presentation Outline** **Nutritional Advances Timeline** Are Camelids Different? How Much Do Alpacas Eat? Nutrient Requirements Research **Future Research Needs** R. Van Saun, Cuzco, Peru PennState Extension **Snowmass Alpaca Auction** #### Nutritional Advances through Research Recent collaborative research activities addressing alpaca nutrition 5 ## Understanding the Beast How are alpacas similar or different from sheep and cows? **Understanding the Beast** #### **Unique Alpaca Adaptations** - Anatomic differences from ruminant animals allow for greater digestion of low-quality forage - Slower rate of passage retains forage longer, lower intake capacity - Recycling of urea to support fiber fermentation - Metabolic adaptations also allow for survival - Altered glucose metabolism due to low insulin secretion, sensitivity - Metabolism oxidizes fatty acids from fiber fermentation, not glucose - Greater use of amino acids for glucose production - Low insulin secretion allows for greater fat mobilization 9 **Understanding the Beast** #### Unique Glucose Metabolism - Unlike ruminants, camelids maintain a higher blood glucose concentration - Glucose: 80 120 mg/dL (> 300 mg/dL) - Sugar, Starch → Propionate → Glucose - Minimal sugar and starch in native diet - Adaptations - o Insulin resistance (Type II diabetes) readily mobilize fat - Greater VFA oxidation use acetate, butyrate from fiber fermentation - Increased gluconeogenesis from amino acids like a cat! **Understanding the Beast** #### Unique Protein Metabolism - Predominantly consume a low protein diet dry season forage - Allowing greater microbial fermentation of forage increases production of microbial protein (50-60% protein) - Use of amino acids for glucose production produces large amounts of urea - Recycle urea via saliva to C-1 to support microbial fermentation of plant fiber 13 **Understanding the Beast** #### Alpaca BUN Concentrations by Region | Region | N | BUN (mg/dL) | Maximum | Minimum | Dietary CP (%
DM) | |-------------------|----|---------------------------|---------|---------|----------------------| | Cerro de
Pasco | 50 | 21.65 ± 5.30 ^c | 46.88 | 15.07 | 13.0 ± 0.76 | | Junín | 50 | 24.82 ± 2.07 ^b | 28.67 | 19.88 | 7.53 ± 0.51 | | Puno | 50 | 30.43 ± 6.11 ^a | 47.72 | 20.30 | 11.60 ± 0.69 | **Understanding the Beast** #### Dietary Protein Effects on BUN Concentration | Treatment | Days relative to birth | n | Mean ± SD
(mg/dL) | |---------------------|------------------------|----|----------------------| | | Day -7 | 16 | 25.34 ± 3.19 | | Low Protein, 9% | Day 0 | 16 | 18.16 ± 7.01 | | | Day +7 | 16 | 14.14 ± 5.42 | | | Day -7 | 16 | 25.72 ± 5.25 | | Medium Protein, 12% | Day 0 | 16 | 20.46 ± 6.76 | | | Day +7 | 16 | 17.52 ± 5.32 | | | Day -7 | 16 | 26.29 ± 3.36 | | High Protein, 15% | Day 0 | 16 | 21.22 ± 6.11 | | | Day +7 | 16 | 24.03 ± 5.55 | | | | | | BUN concentrations differed by treatment group, P<0.05 15 **Understanding the Beast** #### Implications for Feeding Alpacas - Feed a high forage diet with supplements that have fermentable fiber sources (beet pulp, soyhulls, wheat midds) - Minimize feeding of high starch feed ingredients (corn, barley, wheat) to prevent forestomach acidosis - Ensure sufficient C-1 degradable protein (25-30% soluble protein) in diet to support microbial fiber fermentation - Camelids are predisposed to fatty liver disease - o Inadequate dietary protein limits glucose production, fat transport - o Inadequate intake leading to rapid fat mobilization **Alpaca Feed Intake** #### **Understanding Feed Intake** - Consumption of dry matter is the cornerstone of nutrition - Nutrient content of the diet is determined by how much the animal will consume - Historically, it has been assumed camelids consume less compared to ruminants due to their ability to retain forage in C-1 - Lower intake for low-quality forages - o Similar intake for high-quality forages - Ruminant animal intake is directed by NDF content of forage is this the same for alpacas? | Physiologic State | TDN % | CP% | Calcium % | Phosphorus % | |-------------------|-------------|--------------|--------------|--------------| | Llamas | | | | | | Maintenance | 41.8 | 7.5 | 0.34 | 0.24 | | Growth | 54.5 - 61.4 | 7.8 – 9.0 | 0.36 - 0.40 | 0.25 - 0.28 | | Lactation | 54.5 - 56.8 | 10.6 - 11.4 | 0.44 - 0.45 | 0.31 | | Pregnancy | 54.5 | 7.9 | 0.45 | 0.31 | | Alpacas | | | | | | Maintenance | 48.0 | 7.4 | 0.32 | 0.22 | | Growth | 60.2 - 67.0 | 7.8 - 9.1 | 0.37 - 0.40 | 0.26 - 0.29 | | Lactation | 60.2 - 62.5 | 8.1 | 0.42 | 0.30 | | Pregnancy | 60.2 | 10.8 - 12.0 | 0.42 - 0.44 | 0.29 - 0.31 | | NRC 2007 | | | | | | Maintenance | 53.1% | 9.2% | 0.18% | 0.14% | | Growth | 52 - 80% | 8.9 - 12.5% | 0.3 - 0.68% | 0.17 - 0.33% | | Lactation | 52 - 80% | 9.6 - 16% | 0.3 - 0.75% | 0.18 - 0.42% | | Pregnancy | 53 - 80% | 8.5 - 15.76% | 0.25 - 0.45% | 0.17 - 0.24% | Comparative Forage Intake Grass Hay vs. Grass Seed Straw Chemical composition and degradation characteristics of green hay (GH) and grass seed straw (GSS). | Forage type | GH(n=3) | GSS(n=2) | |---------------------------|------------------|------------------| | Dry matter, % | 90.6 ± 0.6 | 91.8 ± 0.7 | | Ash, % of DM | 8.43 ± 0.73 | 3.95 ± 0.61 | | Crude protein, % of DM | 14.8 ± 0.8 | 6.5 ± 0.4 | | Crude fat, % of DM | 3.10 ± 0.30 | 0.98 ± 0.03 | | NDF,3 % of DM | 57.7 ± 5.7 | 80.9 ± 0.7 | | ADF,b % of DM | 32.2 ± 1.6 | 47.7 ± 0.7 | | ADL, 6 % of DM | 3.68 ± 0.33 | 8.03 ± 0.27 | | INDF,d % of NDF | 15.01 ± 0.45 | 28.14 ± 0.53 | | k _d DNDF,e %/h | 5.2 | 0.9 | Body weight (BW) and daily intake in goats, sheep, and llamas fed green hay (GH) or grass seed straw (GSS). | GH | | | GSS | | | • | P-valu | ue | | |---|--|---|---|---|--|--|--------|--|-----| | Goat | Sheep | Llama | Goat | Sheep | Llama | SEM | F | S | F×S | | 44 | 78 | 137 | 45 | 72 | 132 | 5.3 | • | ••• | ns | | 0.67 ^d
1.56 ^{ab} | 1.43 ^b
1.83 ^a | 1.76 ^a
1.28 ^b | 0.64 ^d
1.43 ^b | 0.91 ^{cd}
1.27 ^b | 0.99 ^c
0.76 ^c | 0.10
0.10 | | | | | 40.1 ^b | 54.3 ^a | 43.8 ^b | 36.9 ^b | 37.0 ^b | 25.8° | 2.83 | ns | | | | 0.90bc | 1.05 ^{ab} | 0.74 ^c | 1.16 ^a | 1.03 ^{ab} | 0.62 ^d | 0.06 | ns | | | | | Goat 44 0.67 ^d 1.56 ^{ab} 40.1 ^b 0.39 ^c | Goat Sheep 44 78 0.67 ^d 1.43 ^b 1.56 ^{ab} 1.83 ^a 40.1 ^b 54.3 ^a 0.39 ^c 0.82 ^b 0.90 ^{bc} 1.05 ^{ab} | Goat Sheep Llama 44 78 137 0.67 ^d 1.43 ^b 1.76 ^a 1.56 ^{ab} 1.83 ^a 1.28 ^b 40.1 ^b 54.3 ^a 43.8 ^b 0.39 ^c 0.82 ^b 1.02 ^a 0.90 ^{bc} 1.05 ^{ab} 0.74 ^c | Goat Sheep Llama Goat 44 78 137 45 0.67 ^d 1.43 ^b 1.76 ^a 0.64 ^d 1.56 ^{ab} 1.83 ^a 1.28 ^b 1.43 ^b 40.1 ^b 54.3 ^a 43.8 ^b 36.9 ^b 0.39 ^c 0.82 ^b 1.02 ^a 0.52 ^c 0.90 ^{bc} 1.05 ^{ab} 0.74 ^c 1.16 ^a | Goat Sheep Llama Goat Sheep 44 78 137 45 72 0.67 ^d 1.43 ^b 1.76 ^a 0.64 ^d 0.91 ^{cd} 1.56 ^{ab} 1.83 ^a 1.28 ^b 1.43 ^b 1.27 ^b 40.1 ^b 54.3 ^a 43.8 ^b 36.9 ^b 37.0 ^b 0.39 ^c 0.82 ^b 1.02 ^a 0.52 ^c 0.74 ^b 0.90 ^{bc} 1.05 ^{ab} 0.74 ^c 1.16 ^a 1.03 ^{ab} | Goat Sheep Llama Goat Sheep Llama 44 78 137 45 72 132 0.67 ^d 1.43 ^b 1.76 ^a 0.64 ^d 0.91 ^{cd} 0.99 ^c 1.56 ^{ab} 1.83 ^a 1.28 ^b 1.43 ^b 1.27 ^b 0.76 ^c 40.1 ^b 54.3 ^a 43.8 ^b 36.9 ^b 37.0 ^b 25.8 ^c 0.39 ^c 0.82 ^b 1.02 ^a 0.52 ^c 0.74 ^b 0.80 ^b 0.90 ^{bc} 1.05 ^{ab} 0.74 ^c 1.16 ^a 1.03 ^{ab} 0.62 ^d | | Goat Sheep Llama Goat Sheep Llama SEM F 44 78 137 45 72 132 5.3 . 0.67 ^d 1.43 ^b 1.76 ^a 0.64 ^d 0.91 ^{cd} 0.99 ^c 0.10 1.56 ^{ab} 1.83 ^a 1.28 ^b 1.43 ^b 1.27 ^b 0.76 ^c 0.10 40.1 ^b 54.3 ^a 43.8 ^b 36.9 ^b 37.0 ^b 25.8 ^c 2.83 0.39 ^c 0.82 ^b 1.02 ^a 0.52 ^c 0.74 ^b 0.80 ^b 0.06 ns 0.90 ^{bc} 1.05 ^{ab} 0.74 ^c 1.16 ^a 1.03 ^{ab} 0.62 ^d 0.06 ns | | $^{^{}a-d}$ Within a row, means without common superscripts differ significantly (P<0.05). Jalali et al., Sm. Ruminant Research 2012 ^a NDF= neutral detergent fibre. b INDF = indigestible NDF. Alpaca Feed Intake **Camelid Intake Comparisons** Summary data from 11 published feeding trials **Maintenance Feeding Trials** Р Alpacas Llamas 1565 ± 37 801 ± 43 Dry matter intake, g/day < 0.0001 DMI/Metabolic BW, g/kg 37.1 ± 1.8 0.0002 48.4 ± 1.5 NDF intake, g/d 480 ± 22 913 ± 19 <0.0001 NDF % BW 0.78 ± 0.03 0.89 ± 0.03 0.061 DMI % BW, mean 1.35 ± 0.06 1.53 ± 0.05 0.105 0.37 - 2.40.75 - 1.8 DMI % BW, range Peruvian Feeding Trials DMI % BW 1.52 to 2.6 Growing alpaca DMI % BW 2.25 to 2.5 Pregnant alpaca Lactating alpaca DMI % BW 2.77 to 2.98 PennState Extension 23 #### Alpaca Feed Intake #### Camelid Intake Modeling ## Summary data from 11 published feeding trials | Darameter | Llamas | | | Alpacas | | | | |---|---------|---------|---------|---------|---------|------------------|--| | Parameter | NDF%BW | DMI%BW | DMI/MBW | NDF%BW | DMI%BW | DMI/MBW | | | СР | 0.0102 | NS | NS | <0.0001 | <0.0001 | <0.0001 | | | CP ² | 0.0425 | NS | 0.0004 | <0.0001 | <0.0001 | <0.0001 | | | CP ³ | 0.0707 | NS | 0.0024 | <0.0001 | <0.0001 | <0.0001 | | | NDF | NS | 0.0003 | 0.0003 | NS | NS | NS | | | NDF ² | <0.0001 | <0.0001 | 0.0005 | <0.0001 | <0.0001 | <0.0001 | | | NDF ³ | NS | NS | 0.0007 | <0.0001 | <0.0001 | <0.0001 | | | CP*NDF | 0.0003 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | | | CP*NDF ² | 0.0014 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | | | CP*NDF3 | 0.0036 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | | | Model r ² | 0.70 | 0.77 | 0.84 | 0.76 | 0.75 | 0.78 | | | P <f< td=""><td><0.0001</td><td><0.0001</td><td><0.0001</td><td><0.0001</td><td><0.0001</td><td><0.0001</td></f<> | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | | | | | | | | (A) | PennState Extens | | **Alpaca Feed Intake** #### Implications for Feeding Alpacas - Forage quality as defined by NDF and Crude Protein content will impact intake capacity - When fed lower quality forages (>60% NDF) intake will be reduced to allow for greater microbial fermentation – dietary nutrient content will need to be increased - When higher quality forages (30-55% NDF) are fed, intake will be higher and dietary nutrient content reduced – higher risk for obesity - Intake guideline is to provide 0.8-0.9% body weight as NDF intake capacity 25 ## Forage and Nutrient Delivery Recognizing limiting nutrients in forage Nutrient – Reproduction Interactions - **Nutrient Requirements Body Condition Score Effects Dietary Phosphorus Effect** Effect of body condition on progesterone level in pregnancy alpacas а 6.5 5.95 Progesterone, ng/ml 5.45 4.63 4.52 4.24 3.5 Day +7 Day +14 Day +28 Days after breeding Day 9 Day 13 ----- High ---- Medium ■Low ■Moderate ■High Deza Calsin et al., unpublished data 2019 PennState Extension Quispe et al., Rev Inv Vet Peru 30 (2019) 32 | Protein Intake Study | | | | | | | | |-----------------------------|-------------------------------|--------------------------|------------------|--|--|--|--| | | Dietary Crude Protein Content | | | | | | | | | Low (9%) | Medium (12%) | High (15%) | | | | | | Prepartum | | | | | | | | | Intake, kg/d | 1.58 ± 0.67° | 1.69 ± 0.51 ^b | 1.75 ± 0.79° | | | | | | Intake, % of body weight | 2.25 | 2.41 | 2.5 | | | | | | CP intake, g/day | 142.2 | 202.8 | 262.5 | | | | | | Predicted CP Req, g/day | 167.5 (10.6%) | 167.5 (9.9%) | 167.5 (9.6%) | | | | | | Postpartum | | | | | | | | | Intake, kg/d | 1.64 ± 0.67 ^b | 1.72 ± 0.67° | 1.77 ± 0.67° | | | | | | Intake, % of body weight | 2.77 | 2.92 | 2.98 | | | | | | CP intake, g/day | 147.6 | 206.4 | 265.5 | | | | | | CP Req, g/day (%CP) | 210 (13.75%) | 215 (12.1%) | 215 (11.8%) | | | | | | Ancco, E PhD Thesis LaMolin | a | | PennState Extens | | | | | **Nutrient Requirements Growth Responses to Phosphorus** Middle of the Study **End of the Study Treatment** kg/d DM % BW g/day kg/d DM % BW g/day **Low Phosphorus** 0.458 ± 0.16 ^c 1.52 0.73 0.717 ± 0.82^{c} 2.07 1.15 **Medium Phosphorus** 0.562 ± 0.78^{b} 1.73 1.41 0.826 ± 0.82^{b} 2.24 2.07 **High Phosphorus** 0.652 ± 0.53^{a} 1.97 2.22 0.967 ± 0.49^{a} 2.60 3.29 **Initial BCS** Middle **Final BCS Treatment** Low Phosphorus 2.95 ± 0.06^{a} 2.92 ± 0.08^{b} 2.94 ± 0.08^{b} **Medium Phosphorus** 2.89 ± 0.10^{a} 3.03 ± 0.09 ab 3.25 ± 0.08a 3.01 ± 0.09a a, b different letter in the same column differed significantly (P<0.05) 3.36 ± 0.08^{a} 3.52 ± 0.07a PennState Extension **High Phosphorus** Quispe, C. PhD Thesis LaMolina ### Camelid Nutrition Future Needs What are critical needs in better understanding camelid nutrition? What research is needed for sustainability of SA camelid production? PennState Extension 41 **Snowmass Alpaca Auction** #### What are our future SAC nutritional needs? - Controlled feeding trials to determine mineral and vitamin requirements for differing physiologic states are needed. - Further evaluation and modification of factorial nutrient requirement models. - Further characterize potential forestomach degradation of protein sources to define degradable and undegradable protein fractions in feeds in more precisely feeding the camelid. - Characterize nutritional factors controlling feed intake, including protein and NDF, at different physiologic states. - Composition of gain over the growth period to improve requirements for growing animals. - What factors influence the development of the forestomach to improve transition of nursing cria to solid feed without negatively impacting growth and health. - Potential nutritional effects on colostrum formation and quality. - Interaction of late pregnancy diet on cria survival and growth and reproduction of the female.